Lesson 1.07 Rigid Motion

Geometry GT

Analyze

Explore

In your own words, what is the definition of a **translation**?

In your own words, what is the definition of a **reflection**?

Draw each rigid transformation in a different color.

A. Translate figure S along the line segment v in the direction shown by the arrow.

- **B.** Reflect figure S across line y.
- **C.** Reflect figure S across line m.
- **D.** Translate figure S along the line segment w in the direction shown by the arrow.
- **E.** Reflect the image from **D** across line y.
- **F.** How are the images the same? How are they different?

Definitions

Rigid transformation: a translation, rotation, or reflection of a figure; sometimes used to refer to a sequence of transformations

Image: the new position of a figure after a transformation is applied

Congruent: two figures with the same shape and size; if there exists a rigid transformation that takes one figure onto another, then the two figures are congruent

Discuss

Here are 3 congruent L-shapes.

A. Describe a sequence of transformations that will take Figure A onto Figure B.

B. If you reverse the order of your sequence, will the reverse sequence still take A onto B?

C. Describe a sequence of transformations that will take Figure A onto Figure C.

D. If you reverse the order of your sequence, will the reverse sequence still take A onto C?

Demonstrate

Reflect quadrilateral ABCD across line f.

Practice

1. There is a sequence of rigid transformations that takes A to A', B to B', and C to C'. The same sequence takes D to D'. Draw and label D'.

2. Which construction could be used to construct an isosceles triangle ΔABC given line segment \overline{AB} ?

A. Mark a third point C not on segment \overline{AB} . Draw segments \overline{AC} and \overline{BC} .

B. Label a point C on segment \overline{AB} and construct a line perpendicular to \overline{AB} through point C. Draw segments \overline{AC} and \overline{BC} .

C. Construct the perpendicular bisector of segment \overline{AB} . Mark the intersection of this line and \overline{AB} and label it C. Draw segments \overline{AC} and \overline{BC} .

D. Construct the perpendicular bisector of segment \overline{AB} . Mark any point C on the perpendicular bisector except where it intersects \overline{AB} . Draw segments \overline{AC} and \overline{BC} .

- **3.** Select **all** true statements about regular polygons.
 - A. All angles are right angles
 - **B.** All angles are congruent
 - **C.** All side lengths are equal
 - **D.** There are exactly 4 sides
 - **E.** There are at least 3 sides

4. This straightedge and compass construction shows quadrilateral *ABCD*. Is *ABCD* a rhombus? Explain how you know.

