Lesson 2.05 AAS/ASA Congruence

Geometry GT

Analyze

What do you notice about the angles and sides in the two triangles below? What do you wonder?

Theorem

In a triangle, the greater side is opposite the greater angle. Conversely, the greater angle is opposite the greater side.

Explore

Triangle ΔABC has the following characteristics:

- $m \angle A = 30^{\circ}$
- $m \angle B = 95^{\circ}$
- AB = 90 mm
- BC = 55 mm
- AC = 109.5 mm

Construct triangle $\triangle ABC$ with dry pasta. Then, attempt to construct a triangle with a longer \overline{AC} , and another triangle with a shorter \overline{AC} . What happens to the angles and sides of the triangles?

Theorem

Angle-Angle-Side Triangle Congruence Theorem: in two triangles, if two pairs of corresponding angles are congruent, and a corresponding pair of non-included sides are congruent, then the two triangles are congruent

Discuss

Two triangles, ΔWXY and ΔDEF , have two pairs of corresponding angles congruent ($\angle W \cong \angle D$ and $\angle X \cong \angle E$), and the corresponding sides between those angles are congruent ($\overline{WX} \cong \overline{DE}$). Sketch these two triangles, and use a sequence of rigid motions to take ΔWXY to ΔDEF . Consider how you know that the vertices must line up.

Theorem

Angle-Side-Angle Triangle Congruence Theorem: in two triangles, if two pairs of corresponding angles are congruent, and the corresponding pair of included sides are congruent, then the two triangles are congruent

Demonstrate

Prove that if a point C is the same distance from A as it is from B, then C must be on the perpendicular bisector of \overline{AB} . Hint: sketch the scenario, then consider what auxiliary lines will assist.

Theorem

Perpendicular Bisector Theorem: if a point is equidistant from the endpoints of a segment, then it must be on the perpendicular bisector of the segment

Practice

1. What triangle congruence theorem could you use to prove $\Delta ADE \cong \Delta CBE$?

2. Esther wrote a proof that $\Delta BCD \cong \Delta DAB$, but it is incomplete. How can Esther fix her proof?

A. Line \overrightarrow{AB} is parallel to line \overrightarrow{DC} and cut by transversal \overrightarrow{BD} . So angles $\angle CDB$ and $\angle ABD$ are alternate interior angles and must be congruent.

B. Side \overline{DB} is congruent to side \overline{BD} because they're the same segment.

C. $\angle A$ is congruent to $\angle C$ because they're both right angles.

D. By the Angle-Side-Angle Triangle Congruence Theorem, ΔBCD is congruent to ΔDAB .

3. Segment \overline{GE} is an angle bisector of both $\angle HEF$ and $\angle FGH$. Prove that $\triangle HGE$ is congruent to $\triangle FGE$.

4. Triangles $\triangle ACD$ and $\triangle BCD$ are isosceles. If $m \angle BAC = 33^{\circ}$ and $m \angle BDC = 35^{\circ}$, find $m \angle ABD$.

