Lesson 2.06 SSS Congruence

Geometry GT

Experiment

Construct a triangle with the given side lengths on patty paper.

Can you make one that doesn't look like anyone else's?

Explore

Claire is attempting to prove that there is a sequence of rigid motions that take ΔSTU to ΔGHJ , given that $\overline{ST} \cong \overline{GH}, \overline{TU} \cong \overline{HJ}$, and $\overline{SU} \cong \overline{GJ}$.

Help fill in the missing pieces to Claire's proof.

A. \overline{ST} is the same length as ______, so they are congruent. Therefore, there is a rigid motion that takes \overline{ST} to ______.

B. Apply this rigid motion to ΔSTU . The image of T will coincide with _____, and the image of S will coincide with _____.

C. We cannot be certain that the image of U, which we will call U', coincides with _____ yet. If it does, then our rigid motion takes ΔSTU to ΔGHJ , proving $\Delta STU \cong \Delta GHJ$. If it does not, then we continue.

D. \overline{HJ} is congruent to the image of ______, because rigid motions preserve distance.

E. Therefore, H is equidistant from U' and _____.

F. A similar argument shows that G is equidistant from U' and _____.

G. \overline{GH} is the ______ of segment $\overline{U'J}$, because the ______ is determined by two points that are both equidistant from the endpoints of a segment.

H. Reflecting across the _____ of $\overline{U'J}$ takes _____ to ____.

I. Therefore, after the reflection, all three pairs of vertices coincide, proving triangles ______ and _____ are congruent.

Theorem

Side-Side-Side Triangle Congruence Theorem: in two triangles, if all three pairs of corresponding sides are congruent, then the two triangles are congruent

Discuss

It follows from the Side-Side-Side Triangle Congruence Theorem that, if the lengths of three sides of a triangle are known, then the measures of all the angles must be determined.

On a separate sheet of paper, use a ruler and protractor to make triangles where two sides are 4 cm and the third side is the length given in the table below, then measure the angle between the 4 cm sides.

Side Length	Angle Measure	Side Length	Angle Measure
$1 \mathrm{~cm}$		$5~\mathrm{cm}$	
$2 \mathrm{~cm}$		$6 \mathrm{~cm}$	
$3 \mathrm{~cm}$		$7~{ m cm}$	
4 cm			

Do you notice any relationships between the side lengths and angle measures?

Demonstrate

Label each of the following by whether you could prove the triangles congruent using:

- Side-Side-Side Triangle Congruence Theorem
- Side-Angle-Side Triangle Congruence Theorem
- Angle-Side-Angle Triangle Congruence Theorem
- Angle-Angle-Side Triangle Congruence Theorem
- None of the above

Practice

1. A kite is a quadrilateral which has two adjacent sides that are congruent and the other two adjacent sides are also congruent. Given kite WXYZ, show that at least one of the diagonals of a kite decomposes the kite into two congruent triangles.

2. WXYZ is a kite. Given $m \angle WXY = 133^{\circ}$ and $m \angle ZWX = 60^{\circ}$, find $m \angle ZYW$.

4. Each statement is always true. Select all statements for which the converse is also always true.

A. Statement: if two angles form a straight angle, then they are supplementary. Converse: if two angles are supplementary, then they form a straight angle.

B. Statement: in an isosceles triangle, the base angles are congruent. Converse: if the base angles of a triangle are congruent, then the triangle is isosceles.

C. Statement: if a point is equidistant from the endpoints of a segment, then it lies on the perpendicular bisector of the segment.

Converse: if a point lies on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

D. Statement: if two angles are vertical, then they are congruent. Converse: if two angles are congruent, then they are vertical.

E. Statement: if two lines are perpendicular, then they intersect to form four right angles. Converse: if two lines intersect to form four right angles, then they are perpendicular.