$\qquad$

# Lesson 3.02 <br> Deep Dive: Scaling the Solar System 

Geometry GT

## Task \#1

Today we will make scale drawings of the planets in the solar system and their distances from Earth. To begin, a circle with a diameter of 2 cm represents Earth.

You will be assigned three planets. Complete the corresponding rows in the table below.

| Planet | Average <br> Diameter (km) | Average Orbit <br> Radius (km) | Scaled <br> Diameter (cm) | Scaled Orbit <br> Radius (cm) | Scaled Distance <br> from Earth (cm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mercury | 4,879 | $57,900,00$ |  |  |  |
| Venus | 12,104 | $108,200,000$ |  |  |  |
| Earth | 12,756 | $149,600,000$ | 2.000 |  |  |
| Mars | 6,792 | $227,900,000$ |  |  |  |
| Jupiter | 142,984 | $778,600,000$ |  |  |  |
| Saturn | 120,536 | $1,433,500,000$ |  |  |  |
| Uranus | 51,118 | $2,872,500,000$ |  |  |  |
| Neptune | 49,528 | $4,495,100,000$ |  |  |  |

Do you believe it is possible to complete a scaled drawing in class? Explain your reasoning.

## Task \#2

Let's try this again, but imagine that the Earth is about the size of the period at the end of this sentence, which is about 0.3 mm in diameter.

You will be assigned three planets. Complete the corresponding rows in the table below.

| Planet | Average <br> Diameter (km) | Average Orbit <br> Radius (km) | Scaled <br> Diameter (mm) | Scaled Orbit <br> Radius (mm) | Scaled Distance <br> from Earth (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mercury | 4,879 | $57,900,00$ |  |  |  |
| Venus | 12,104 | $108,200,000$ |  |  |  |
| Earth | 12,756 | $149,600,000$ | 0.3000 |  |  |
| Mars | 6,792 | $227,900,000$ |  |  |  |
| Jupiter | 142,984 | $778,600,000$ |  |  |  |
| Saturn | 120,536 | $1,433,500,000$ |  |  |  |
| Uranus | 51,118 | $2,872,500,000$ |  |  |  |
| Neptune | 49,528 | $4,495,100,000$ |  |  |  |

Can the new scale model fit inside the classroom?

