Lesson 4.09 Law of Cosines

Geometry GT

Recall

For each triangle, do you have enough information to find the length of \overline{AC} ? If so, what could you use?

Explore

The **Law of Cosines** is another tool that can be used to find missing sides and angles in oblique triangles. Consider the following triangle:

If the lengths a and b are known, in addition to the measure of $\angle C$, the Law of Sines can not be used, as there is no pair of opposite sides and angles that are known. With the Law of Cosines, however, the length of c could be found:

$$c^2 = a^2 + b^2 - 2ab\cos C$$

The proof of this theorem is outside the scope of this course. Note: the Law of Cosines can be thought of as a generalized Pythagorean Theorem, one that can be used in non-right triangles.

Below is a summation of solving oblique triangles:

If you know	you can find	by using
AAS/ASA	either missing side	Law of Sines
SSA	the unknown angle opposite one of the known sides $*$	Law of Sines
SAS	the missing side	Law of Cosines
SSS	any missing angle	Law of Cosines

Recall: using the Law of Sines to find an angle may not always yield a single solution, if one at all, and should only be used as a last resort.

Discuss

Find the variables $(d \text{ and } \theta)$ in the following problems.

Demonstrate

Solve the Law of Cosines for the angle in the equation (that is, get C by itself in $c^2 = a^2 + b^2 - 2ab\cos C$).

Practice

1. In $\triangle ABC$, AB = 7.344, BC = 17, $m \angle B = 50.6^{\circ}$, and $m \angle C = 24.7^{\circ}$.

A. Use the Law of Sines to find b.

B. Use the Law of Cosines to find b.

2. Two boats leave port at the same time. One boat sails due west at a speed of 17 miles per hour, the other powers 42° east of north at a speed of 23 miles per hour. How far apart are the two boats after 2 hours?

3. Patrick wants to measure the height of a castle controlled by hostile forces. When he is as close as he can get to the castle, the angle of elevation to the top of the wall is 18.5°. He then retreats 20 yards and measures the angle of elevation again; this time it is 15.9°. How tall is the castle?

4. The sides of a triangle are 54mm, 30mm, and 40mm. Find the area of the triangle.